
c

N91-17572

Generic Interpreters

and

Microprocessor Verification

Phillip J. Windley

Department of Computer Science

University of Idaho

August, 1990

This work was sponsored under Boeing Contract NAS1-18586, Task Assignment No.

with NASA-Langley Research Center.

1

Outline

• Introduction

• Generic interpreters

• Microprocessor Verification

• Future Work

!

Microprocessor Verification

VIPER, the first commercially available,

"verified" microprocessor, has never been

formally verified.

The proof was not completed even though

2 years were spent on the verification.

3

Microprocessor Verification

(continued)

O,u,r research is a,i,med at ma,ki,ng t h,e ve,rifl-

ca,tion o,f larg,e microprocessors tra,cta,bl_.

• Our objective is to provide a framework in

which a masters-level student can verify

VIPER in 6 person-months.

4

Determining Correot.ness

In VIPER (and most other microprocessors),

the correctness theorem was shown by proving

that the electronic block model implies th,e

m ac ro-level specifi,c ation.

I M;acro' LeVelInterpreter I

T
I Electronic BloCkModel I

5

The Problem

(continued)

• Microprocessor verification is done through case analysis on the in-

structions in the macro level.

• The goal is to show that when the conditions for an instruction's

selection are right, the electronic block model implies that it operates

(_orrectly.

• A lemma that the EBM correctly implements each instruction can be

used to prove the top-level correctness result.

The Problem

U nfortu nately,, the one-ste.p

sca_le wel_l beca,use

method doesn't

• The n,um_b,ero,fcases g_.tsl_arge.

I The description of the electronic block

model is very large.

T

Hierarchical Decomposition

I Macro LevelInterpreter I

l
I Micro LevelInterpreter J

• A microprocessor specification can be de-

composed hierarchically.

The abstract levels are represented explic-

itly.

8

Interpreters

An abstract model of the different layers in the hierarchy provides a method

ological approach to microprocessor verification.

I The model drives the specification.

I The model drives the verification.

9

Interpreters

(top level)

Select I

PRECEDINGPAGE BLANK NOT FILMED

16

Specifying an Interpreter

(overview)

We specify an interpreter by:

Choosing a n-tuple to represent the state,

S.

Defining a set of functions denoting

vidual interpreter instructions, J.

indi-

• Defining a next state function, N.

Defining a predicate denoting the behavior

of the interpreter, I.

PRECEDING PAGE BLANK NOT FILMED

19

Verifying an Interpreter

(overview)

We verify an interpreter, I with

implementation M by showing

respect to its

M =¢_I.

To do this, we will show that every

in J can be correctly implemented

VjEJ.

M =# (Vt: time.

c(t) _ s(t + n) --j(s(t)))

instruction

by M:

where C represents the

tion j's selection.

conditions for instruc-

20

AVM-1

We have designed and are verifying a micro-

computer with interrupts, supervisory modes

and support for asynchronous memory.

The datapath is loosely based on the AMD

2903 bit-sliced datapath.

• The instruction format is very simple.

• The control unit is microprogrammed.

PRECEDING PAGE. BLANK NOT FILMED 49

AVM-1 's Instruction

(subset)

Set

Opcode
000000

000001
oooolo
000110

000111

010000
011011
011111

Mnemonic

JMP
CALL
INT

LD
ST
ADD
SUBI
NOOP

Operation

jump on 16 conditions
call subroutine

user interrupt
load
store

add (3-operands)
subtract immediate

no operation
(2-operancls)

• The architecture is load-store.

• The instruction set is RISC-like.

• There is a large register file.

5O

77

4-ck.2_
- :LYeq.._:f

Cbu JLLU

_ Im_J

Figure 5.2: The AVM-I Datapath

The Phase-Level Specification

The n-tuple representing the state:

Sphas e (mir, mpc, reg,

alatch, blatch, mar, mbr,

clk, mem, urom, ireq, lack)

52

The Phase-Level Specification

A typical function specifying an
behavior from Jphase:

instruction's

F-de f phase_two rep (mir, mpc, reg, alatch, blatch,

mbr, mar, clk, mem, uromj

ireq, iack) =

(mir, mpc, teE,

EL (bt5_val (SrcA mir)) reg,

EL (bt5_val (SrcB mir)) reg,

mbr, mar, (T,F), mem, urom, ireq, Iack mir)

53

The Electronic Block Model

The electronic

an interpreter.

block model is not specified as

• EBM is a structural specification.

• The specification

-- is in terms of smaller blocks.

uses existential

internal lines.

quantification to hide

54

Objects

There are several abstract classes of objects

that we will use to define and verify an ab-

stract interpreter.

:,state An object

state.

representing system

:,key The identifying tokens for instruc-

tions.

A stream:time of natural numbers.

We will prime class names to indicate that the

objects are from the implementing level.

PRECEDING PAGE BLANK NOT FILMED

59

Operations

Operation Type

inst_list :(,key x (,state-+ ,state))list
, , ,, ,, ,

key : ,key -+ hum

select ' : ,state -+ ,key

• .key --+ hum
,

cycles
substate

Impl
clock

begin

.......:*state I -+ ,state

•"(time --, ,state I)

: ,state ! --, ,key _

• ,keyl

--+ bool

6O

Interpreter Theory

(obligations)

The instruction correctness lemma is impor-

tant in the generic interpreter verification.

Here

a single

l-de f

is the generic version of that lemma

instruction:

INST_CORRECT s I inst =

(Impl s _) =_

Vt _ : _ime _.

let s-- (,_. substate(s' t')) in

let c-- (cycles(select(s _))) in

(select(s t') = (FST Cns_)) A

(clock(s _ t _) -- begin) =_

((SND inst) (s _') -- (s(t' + c)))

(clock(s'(t'-I-c)) = begin)

A

for

PRECEDING PAGE BLANK NOT FILMED

62

Interpreter Theory

(obligations)

Using the predicate INST_CORRECT,

define the theory obligations:

we can

1. The instruction correctness lemma:

EVERY (INST_CORRECT s')inst_list

2. Every key selects an instruction:

Vk: ,key. (key k) < (LENGTH inst_list)

3. The instruction list is ordered correctly:

Vk : ,key. k- (FST (EL (key k) inst_list))

63

Generic Interpreters

Instantiation

__

+

Macro Level

Interpreter

+
Micro Level

Interpreter

+ I Phase LevelInterpreter

ElectroniCModelBIOck I

PRECEDING PAGE BLANK NOT FILMED
57

Interpreter Theory

(temporal abstraction)

We need to show a relationship between

state stream at the implementation level

the state stream at the top level,

the

and

f

_I t2 "/;5
0 0 0

The function f is a temporal abstraction func-

tion for streams.

PRECEDING PAGE BLANK NOT FILMED

66

Interpreter Theory

(definition)

An interpreter's behavior is specified as a pred-

icate over a state stream.

i--def INTERP s =

let n = (key(select(s t))) in

s(t + 1)= (eND (EL n inst_list))(s

PRECEDING PAGE BLANK NOT FILMED

69

In terpreter Theory

(correctness result)

Our goal is tO verify an interpreter, I with

respect to its implementation M by showing

M=#I.

Here

where

8

f

is the abstract result:

Impl s_A (clock(s _ 0) -- begin) =#

INTERP (s o f)

1

i

w

(At :time. substate(s _ t)) and

(time_abs (cycles o select)s)

70

[nstantiating a Theory

Instantiating

requires:

the abstract interpreter theory

• Defining the abstract constants.

• Proving the theory obligations.

• Running a tool in the formal theorem prover.

71

Definitions

We wish to instantiate the abstract interpreter

theory for the phase-level. The electronic

block model will be the implementing level.

Operation Instantiation
inst_list a list of instructions

key bt2_val
select GetP haseClock

cycles P h ase Level Cycles
substate PhaseSubstate

Impl EBM
clock GetEBMClock

begin EBM_Start

72

An Example

After proving the theory obligations, we can
the instantiation.

let theorem_list =

inst ant iat e_abs tract_theorems

'gen_I '

[Phas e_ I _EVERY_LEMMA;

Phase_I_LENGTH_LEMMA;

Phase I KEY_LEMMA]

[
" ([(F,F) ,phase_one;

(F, T), phase_two

(T, F), phase_three

:_ (T,T) ,phase_four],

bt2_val, GetPhaseClock,

PhaseLevelCycles, PhaseSubstate,

EBM, GetEBMClock, EBM_Start)";

"(A t:time. (mir t, mpc t, reg_list t,

alatch t, blatch t,

mbr_reg t, mar_reg t,

clk t, mem t, urom))"

]
'PHASE ' ;;

perform

J

/t/
f "C,-"_,

73

The Electronic Block Model

EBM rep (A t. (mir t, mpc t, re E t, alatch t, blatch t,

mbr t, mar t, clk t, mere t, urom,

ireq t, iack t)) =

3 opt ie_s sm_s iack_s

amux_s alu_s sh_s mbr_s mar_s rd_s wr_s

cselect bselect aselect

neg_f zero_f (float:time->bool).

DATAPATH rep amux_s alu_s sh_s mbr_s mar_s rd_s wr_s

cselect bselect aselect neg_f zero_f float

float ireq iack_s lack opc ie_s sm_s

elk mem reg alatch blatch mar_teE

mbr_re g reset_e ireq_e /_

CONTROL_UNIT rep mpc air clk amux_s alu_s sh_s mbr_s

• mar_s rd_s wr_s cselect bselect aselect neg_f

zero_f ireq iack_s opc ie_s sm_s urom

reset_e ireq_e

Fully expanded, the electronic block

specification fills about six pages.

model

55

Future Work

• New architectural features.

• Composing verified blocks.

• Verifying operating systems.

• Gate-level verification.

• Byte-code interpreter verification.

• Other classes of computer systems.

J J

32

An Example
(continued)

After some minor manipulation, the final result be-
comes:

EBM

(mir t,mpc t,reg_list

mbr_reg t ,mar_reg t,

Phase_I

(mir t,mpc t,reg_list t,alatch t,blatch t,

mbr_re g t, mar_reg t, clk t ,mem t, urom))

t,alatch t,blatch t,

clk t ,mem t,urom)) ==>

74

Conclusions

The generic proof

• Cleared away all the irrelevant detail.

Formalized the notion of interpreter proofs

which has been used in several micropro-

cessor verifications.

• Provided a structure for future micropro-

cessor verifications.

PRECEDING PAGE BLANK NOT F|LMED

77

